Superstability from categoricity in abstract elementary classes

نویسندگان

  • Will Boney
  • Rami P. Grossberg
  • Monica M. VanDieren
  • Sebastien Vasey
چکیده

Starting from an abstract elementary class with no maximal models, Shelah and Villaveces have shown (assuming instances of diamond) that categoricity implies a superstability-like property for nonsplitting, a particular notion of independence. We generalize their result as follows: given any abstract notion of independence for Galois (orbital) types over models, we derive that the notion satisfies a superstability property provided that the class is categorical and satisfies a weakening of amalgamation. This extends the Shelah-Villaveces result (the independence notion there was splitting) as well as a result of the first and second author where the independence notion was coheir. The argument is in ZFC and fills a gap in the Shelah-Villaveces proof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry in abstract elementary classes with amalgamation

This paper is part of a program initiated by Saharon Shelah to extend the model theory of first order logic to the nonelementary setting of abstract elementary classes (AECs). An abstract elementary class is a semantic generalization of the class of models of a complete first order theory with the elementary substructure relation. We examine the symmetry property of splitting (previously isolat...

متن کامل

Building independence relations in abstract elementary classes

We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...

متن کامل

Independence in abstract elementary classes

We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...

متن کامل

Forking and superstability in Tame AECS

We prove that any tame abstract elementary class categorical in a suitable cardinal has an eventually global good frame: a forking-like notion defined on all types of single elements. This gives the first known general construction of a good frame in ZFC. We show that we already obtain a well-behaved independence relation assuming only a superstability-like hypothesis instead of categoricity. T...

متن کامل

Shelah's categoricity conjecture from a successor for tame abstract elementary classes

We prove a categoricity transfer theorem for tame abstract elementary classes. Theorem 0.1. Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ,LS(K)}. If K is categorical in λ and λ, then K is categorical in λ. Combining this theorem with some results from [Sh 394], we derive a form o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2017